Scientific Validation is in our DNA.

AI must be tried and tested in real-world conditions, and our work with eminent research groups, radiology departments, and clinical experts ensures that our solutions perform accurately and robustly even under strenuous operating conditions like multiple OEMs, field strength, resolution, quality, and imaging artefacts.

Improving the sensitivity of T2-FLAIR lesion detection & evolution: Up to 28% Enhanced Detection Rate 

Evaluation of the contribution of an automatic segmentation tool for the longitudinal follow-up of multiple sclerosis lesions on brain MRI

Manon Rival, Sabine Laurent-Chaballier, Thibault Mura, Giovanni Castelnovo, Eric Thouvenot,
Evaluation de l’apport d’un outil de segmentation automatique pour le suivi longitudinal des lésions de sclérose en plaques en irm cérébrale,
Journal of Neuroradiology,
Volume 50, Issue 2,
2023,
Page 201,
ISSN 0150-9861

Evaluation of two AI techniques: to the detection of T2/FLAIR new lesion during the follow-up of MS patients

Milica Mastilovic et al 2024 [under review]

Radiologists and Artificial Intelligence on clinically relevant metrics for detecting activity in Multiple-Sclerosis patients

H. Dehaene et al. European Society of Neuroradiology 2023 [Poster]

The role of Pixyl.Neuro.MS in Multiple Sclerosis diagnosis and follow-up

H. Dehaene et al 2023 [White Paper]

Supporting radiology workflows: Up to 65% reduction in reading time compared to average brain MRI reading times

Evaluation of the contribution of an automatic segmentation tool for the longitudinal follow-up of multiple sclerosis lesions on brain MRI

Manon Rival, Sabine Laurent-Chaballier, Thibault Mura, Giovanni Castelnovo, Eric Thouvenot,
Evaluation de l’apport d’un outil de segmentation automatique pour le suivi longitudinal des lésions de sclérose en plaques en irm cérébrale,
Journal of Neuroradiology,
Volume 50, Issue 2,
2023,
Page 201,
ISSN 0150-9861

Evaluation of two AI techniques: to the detection of T2/FLAIR new lesion during the follow-up of MS patients

Milica Mastilovic et al [under review]

Predictive AI

Three artificial intelligence data challenges based on CT and MRI

Lassau N, Bousaid I, Chouzenoux E, Lamarque JP, Charmettant B, Azoulay M, Cotton F, Khalil A, Lucidarme O, Pigneur F, Benaceur Y, Sadate A, Lederlin M, Laurent F, Chassagnon G, Ernst O, Ferreti G, Diascorn Y, Brillet PY, Creze M, Cassagnes L, Caramella C, Loubet A, Dallongeville A, Abassebay N, Ohana M, Banaste N, Cadi M, Behr J, Boussel L, Fournier L, Zins M, Beregi JP, Luciani A, Cotten A, Meder JF. Three artificial intelligence data challenges based on CT and MRI. Diagn Interv Imaging. 2020 Dec;101(12):783-788. doi: 10.1016/j.diii.2020.03.006. Epub 2020 Mar 31. PMID: 32245723.

Artificial intelligence to predict clinical disability status scale score in patients with multiple sclerosis using FLAIR MRI

Pauline Roca, Arnaud Attyé, Lucie Colas, Alan Tucholka, Pascal Rubini, Stenzel Cackowski, Juliette Ding, Jean-François Budzik, Felix Renard, Senan Doyle, Emmanuel L. Barbier, Imad Bousaid, Romain Casey, Sandra Vukusic, Nathalie Lassau, Sébastien Verclytte, and François Cotton. “Artificial intelligence to predict clinical disability status scale score in patients with multiple sclerosis using FLAIR MRI” Diagnostic and Interventional Imaging 2020. 

 

Breaking the Clinico-Radiological Paradox in Multiple Sclerosis Using Machine Learning

Arnaud Attyé, Stenzel Cackowski, Alan Tucholka, Pauline Roca, Pascal Rubini, Sebastien Verclytte, Lucie Colas, Juliette Ding, Jean-François Budzik, Felix Renard, Emmanuel L Barbier, Romain Casey, Sandra Vukusic, and François Cotton. “Breaking the Clinico-Radiological Paradox in Multiple Sclerosis Using Machine Learning.” In Proceedings of the 28th Annual Meeting of International Society of Magnetic Resonance in Medicine (ISMRM), Sydney, Australia, 2020.

Trustworthy AI

Conformal Volume Estimation under Covariate Shift

B. Lambert et al. Conformal Volume Estimation under Covariate Shift. MICCAI 2024 [to appear]

Trustworthy clinical AI solutions: A unified review of uncertainty quantification in Deep Learning models for medical image analysis

Benjamin Lambert, Florence Forbes, Senan Doyle, Harmonie Dehaene, Michel Dojat,
Trustworthy clinical AI solutions: A unified review of uncertainty quantification in Deep Learning models for medical image analysis,
Artificial Intelligence in Medicine,
Volume 150,
2024,
102830,
ISSN 0933-3657

AI Performance

Leveraging 3D Information in Unsupervised Brain MRI Segmentation

Benjamin Lambert and Maxime Louis and Senan Doyle and Florence Forbes and Michel Dojat and Alan Tucholka. “Leveraging 3D Information in Unsupervised Brain MRI Segmentation.” 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) (pp. 187-190). 2021

Comparison of automatic segmentation versus visual assessment of white matter hyperintensities and parenchymal atrophy in Alzheimer’s disease

Lison Malaureille. Comparison of automatic segmentation versus visual assessment of white matter hyperintensities and parenchymal atrophy in Alzheimer’s disease. Human health and pathology. 2018. ⟨dumas-01887452⟩ [Thesis]

Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure

Commowick, Olivier, et al. “Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure.” Nature Scientific reports 8.1 (2018): 13650.

Automated quantification of brain lesion volume from post-trauma MR diffusion-weighted Images

Thomas Mistral, Pauline Roca, Christophe Maggia, Alan Tucholka, Florence Forbes, Senan Doyle, Alexandre Krainik, Damien Galanaud, Emmanuelle Schmitt, Stéphane Kremer, Adrian Kastler, Irène Troprès, Emmanuel L. Barbier, Jean-François Payen, and Michel Dojat. “Automated quantification of brain lesion volume from post-trauma MR diffusion-weighted Images.” Frontiers in Neurology, 2022.

Comparaison d’une analyse automatisée d’IRM par Pixyl versus imagerie de fusion dans le suivi de la sclérose en plaques.

Méreaux, Jean-Loup, Benjamin Hebant, Romain Lefaucheur, David Maltête, Nicolas Magne, Emmanuel Gérardin, and Bertrand Bourre. 2020. “Comparaison d’une analyse automatisée d’IRM par Pixyl versus imagerie de fusion dans le suivi de la sclérose en plaques.” In Journées des Jeunes Neurologues (J2N) et de la Recherche clinique, 2020.

Supporting clinical studies

Real-World Effectiveness of Natalizumab Extended Interval Dosing in a French Cohort

Pelle, J., Briant, A.R., Branger, P. et al. Real-World Effectiveness of Natalizumab Extended Interval Dosing in a French Cohort. Neurol Ther 12, 529–542 (2023). https://doi.org/10.1007/s40120-023-00440-5

Focal cortical atrophy following transient meningeal enhancement in a progressive multiple sclerosis

Bonnan M, Money P, Desblache P, Marasescu R, Puvilland LM, Demasles S, Dahan C, Krim E, Tucholka A, Doyle S, Barroso B. Focal cortical atrophy following transient meningeal enhancement in a progressive multiple sclerosis. Neurol Sci. 2021 May;42(5):1959-1961. 

Archive

Other Publications

Benjamin Lambert, Florence Forbes, Senan Doyle, Alan Tucholka and Michel Dojat. “Fast Uncertainty Quantification for Deep Learning-based MR Brain Segmentation.” Explain’AI workshop, In Extraction et Gestion des Connaissances (EGC) 2022 Conference 

Bonnan, M., Money, P., Desblache, P., Tucholka, A., Doyle, S., & Barroso, B. (2019). Atrophie corticale focale après une poussée méningée dans une sclérose en plaques progressive. Revue Neurologique, 175, S91.

Capet, N., Joly, H., Suply, C., Bresch, S., Mondot, L., Cohen, M. and Lebrun-Frénay, C., 2019. L’alexithymie dans la Sclérose en Plaques est associée à une atrophie de la substance blanche et des structures de substance grise centrales. Revue Neurologique, 175, p.S89.

Alexander, Robert W. “Use of PIXYL software analysis of brain MRI (with & without contrast) as valuable metric in clinical trial tracking in study of multiple sclerosis (MS) and related neurodegenerative processes.” Clinical Trials in Degenerative Diseases 2.1 (2017): 1.

Alexander Robert W. “Use of Software Analytics of Brain MRI (with & without contrast) As Objective Metric in Neurological Disorders and Degenerative Diseases” 2017, International Physical Medicine & Rehabilitation Journal

Doyle, Senan, et al. “Sub-acute and Chronic Ischemic Stroke Lesion MRI Segmentation.” International MICCAI Brainlesion Workshop. Springer, Cham, 2017.

Maggia, Christophe, et al. “Traumatic Brain Lesion Quantification based on Mean Diffusivity Changes.” International MICCAI Brainlesion Workshop. Springer, Cham, 2017.

Maggia, Christophe, et al. “Assessment of tissue injury in severe brain trauma.” BrainLes 2015. Springer, Cham, 2015.

Maggia, Christophe, et al. “Traumatic Brain Lesion Quantification based on Mean Diffusivity Changes.” International MICCAI Brainlesion Workshop. Springer, Cham, 2017.  

Thomas Mistral et al. “Automatic Quantification of Brain Lesion Volume from MR Images after Severe Traumatic Brain Injury” for radiology

Menze, Bjoern H., et al. “The multimodal brain tumor image segmentation benchmark (BRATS).” IEEE transactions on medical imaging 34.10 (2014): 1993-2024.

Doyle, S., et al. “Fully automatic brain tumor segmentation from multiple MR sequences using hidden Markov fields and variational EM.” Procs. NCI-MICCAI BraTS (2013): 18-22.

Security Notice

Access to the user portal is protected, and user IP addresses must be whitelisted. 

In the case of connection problems, please contact Pixyl customer support. 

Thank you

A happy holidays and wonderful new year from the Pixyl team!